Let $\alpha$ be the real number such that the coefficient of $x^{125}$ in Maclaurin's series of $(x + \alpha^3)^3 e^x$ is $\dfrac{28}{124!}$. Then $\alpha$ equals ..............
Step 1: Find Maclaurin series
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
$$(x + \alpha^3)e^x = x \cdot e^x + \alpha^3 \cdot e^x$$
$$= x \sum_{n=0}^{\infty} \frac{x^n}{n!} + \alpha^3 \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{x^{n+1}}{n!} + \sum_{n=0}^{\infty} \frac{\alpha^3 x^n}{n!}$$
Step 2: Find coefficient of $x^{125}$
For the term $x^{125}$:
From $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$:
From $\sum_{n=0}^{\infty} \frac{\alpha^3 x^n}{n!}$:
Total coefficient of $x^{125}$: $$\frac{1}{124!} + \frac{\alpha^3}{125!} = \frac{1}{124!} + \frac{\alpha^3}{125 \cdot 124!} = \frac{125 + \alpha^3}{125 \cdot 124!}$$
Step 3: Set equal to given coefficient
$$\frac{125 + \alpha^3}{125 \cdot 124!} = \frac{28}{124!}$$
Multiply both sides by $124!$: $$\frac{125 + \alpha^3}{125} = 28$$
$$125 + \alpha^3 = 28 \times 125 = 3500$$
$$\alpha^3 = 3500 - 125 = 3375$$
$$\alpha = \sqrt[3]{3375} = \sqrt[3]{27 \times 125} = \sqrt[3]{27} \times \sqrt[3]{125} = 3 \times 5 = 15$$
Answer: $\alpha = 15$