\(\lim\limits_{x→α^+}f(g(x))=f(\lim\limits_{x→α^+}g(x))\)
Now, \(\lim\limits_{x→α^+}g(x)=\lim\limits_{x→α^+}\frac{2ln(\sqrt{x}-\sqrt{\alpha})}{ln(e^{\sqrt{x}}-e^{\sqrt{α}})}\)
Now, By applying D'L Hospital
\(\lim\limits_{x→α^+}+\frac{2.\frac{1}{\sqrt{x-\sqrt{\alpha}}}.\frac{1}{2\sqrt{x}}}{\frac{1}{e^{\sqrt{x}}=e^{\sqrt{\alpha}}}.e^{\sqrt{x}}.\frac{1}{2\sqrt{x}}}\)
\(\lim\limits_{x→α^+}\frac{2(e^{\sqrt{x}}-e^{\sqrt{\alpha}})}{e^{\sqrt{x}}(\sqrt{x}-\sqrt{\alpha})}\)
\(\lim\limits_{x→α^+}\frac{2e^{\sqrt{\alpha}}(e^{\sqrt{x}-\sqrt{\alpha}}-1)}{e^{\sqrt{x}}(\sqrt{x}-\sqrt{\alpha})}=2\)
Now, f(x) = \(\sin\frac{\pi x}{12}\) given
Hence f(2) = \(\sin\frac{\pi(2)}{12}\)
\(=\sin\frac{\pi}{6}\)
\(=\frac{1}{2}=0.5\)
So, the correct answer is 0.5
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.


A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.


Read More: Limits and Derivatives