\(\lim\limits_{x→α^+}f(g(x))=f(\lim\limits_{x→α^+}g(x))\)
Now, \(\lim\limits_{x→α^+}g(x)=\lim\limits_{x→α^+}\frac{2ln(\sqrt{x}-\sqrt{\alpha})}{ln(e^{\sqrt{x}}-e^{\sqrt{α}})}\)
Now, By applying D'L Hospital
\(\lim\limits_{x→α^+}+\frac{2.\frac{1}{\sqrt{x-\sqrt{\alpha}}}.\frac{1}{2\sqrt{x}}}{\frac{1}{e^{\sqrt{x}}=e^{\sqrt{\alpha}}}.e^{\sqrt{x}}.\frac{1}{2\sqrt{x}}}\)
\(\lim\limits_{x→α^+}\frac{2(e^{\sqrt{x}}-e^{\sqrt{\alpha}})}{e^{\sqrt{x}}(\sqrt{x}-\sqrt{\alpha})}\)
\(\lim\limits_{x→α^+}\frac{2e^{\sqrt{\alpha}}(e^{\sqrt{x}-\sqrt{\alpha}}-1)}{e^{\sqrt{x}}(\sqrt{x}-\sqrt{\alpha})}=2\)
Now, f(x) = \(\sin\frac{\pi x}{12}\) given
Hence f(2) = \(\sin\frac{\pi(2)}{12}\)
\(=\sin\frac{\pi}{6}\)
\(=\frac{1}{2}=0.5\)
So, the correct answer is 0.5
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.
A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.
Read More: Limits and Derivatives