We are given that \( \alpha \) and \( \beta \) are distinct roots of the quadratic equation \( ax^2 + bx + c = 0 \), which implies:
\[
a\alpha^2 + b\alpha + c = 0 \quad \text{and} \quad a\beta^2 + b\beta + c = 0.
\]
We need to evaluate the limit:
\[
\lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}.
\]
Since \( ax^2 + bx + c = 0 \) at \( x = \alpha \), we have:
\[
\lim_{x \to \alpha} \frac{1 - \cos(0)}{(x - \alpha)^2} = \lim_{x \to \alpha} \frac{1 - 1}{(x - \alpha)^2} = 0.
\]
Now, we expand \( ax^2 + bx + c \) around \( x = \alpha \) using a Taylor expansion. Let \( f(x) = ax^2 + bx + c \). Near \( x = \alpha \), we use the first two terms of the expansion:
\[
f(x) = f(\alpha) + f'(\alpha)(x - \alpha) + \cdots
\]
where \( f(\alpha) = 0 \) (since \( \alpha \) is a root), and
\[
f'(x) = 2ax + b.
\]
Thus, at \( x = \alpha \),
\[
f'(\alpha) = 2a\alpha + b.
\]
Now, we have:
\[
f(x) = (2a\alpha + b)(x - \alpha) + O((x - \alpha)^2).
\]
Using this expansion in \( \cos(f(x)) \), we get:
\[
\cos(f(x)) \approx 1 - \frac{(f(x))^2}{2}.
\]
Substituting \( f(x) = (2a\alpha + b)(x - \alpha) \), we get:
\[
\cos(f(x)) \approx 1 - \frac{((2a\alpha + b)(x - \alpha))^2}{2}.
\]
Thus:
\[
1 - \cos(f(x)) \approx \frac{((2a\alpha + b)(x - \alpha))^2}{2}.
\]
Now, substituting this into the original limit expression, we have:
\[
\frac{1 - \cos(f(x))}{(x - \alpha)^2} \approx \frac{((2a\alpha + b)(x - \alpha))^2}{2(x - \alpha)^2} = \frac{(2a\alpha + b)^2}{2}.
\]
Using the fact that \( \alpha \) and \( \beta \) are distinct roots, we conclude that the correct value for the limit is:
\[
\frac{a^2(\alpha - \beta)^2{2}}.
\]
Thus, the correct answer is \( (A) \).