We are given:
\[
f(x) = x^2,\quad g(x) = \cos x \Rightarrow (g \circ f)(x) = \cos(x^2)
\]
We are to evaluate:
\[
\int_{\alpha}^{\beta} x \cos(x^2) dx
\]
Let \( u = x^2 \Rightarrow du = 2x dx \Rightarrow x dx = \frac{1}{2} du \), and limits become \( \alpha^2, \beta^2 \).
So integral becomes:
\[
\int_{\alpha}^{\beta} x \cos(x^2) dx = \frac{1}{2} \int_{\alpha^2}^{\beta^2} \cos u \, du = \frac{1}{2} [\sin u]_{\alpha^2}^{\beta^2}
\]
Now, solve quadratic:
\[
18x^2 - 9\pi x + \pi^2 = 0 \Rightarrow x = \frac{9\pi \pm \sqrt{(9\pi)^2 - 72\pi^2}}{2 \cdot 18} = \frac{\pi}{6},\ \frac{\pi}{3}
\]
So \( \alpha = \frac{\pi}{6}, \beta = \frac{\pi}{3} \Rightarrow \alpha^2 = \frac{\pi^2}{36}, \beta^2 = \frac{\pi^2}{9} \)
Final answer: \( \frac{1}{2} \left( \sin \frac{\pi^2}{9} - \sin \frac{\pi^2}{36} \right) \)