Given:
\[ P(\text{Ajay does not appear}) = p = \frac{2}{7}, \quad P(\text{Ajay and Vijay both appear}) = q = \frac{1}{5} \]
Let:
\[ P(\text{Ajay appears}) = 1 - p = 1 - \frac{2}{7} = \frac{5}{7} \]
Let \( P(\text{Vijay appears}) = v \). The probability that both Ajay and Vijay appear is given by:
\[ P(\text{Ajay appears}) \times P(\text{Vijay appears}) = q \]
Substituting the given values:
\[ \frac{5}{7} \times v = \frac{1}{5} \]
Solving for \( v \):
\[ v = \frac{1}{5} \times \frac{7}{5} = \frac{7}{25} \]
Thus, the probability that Vijay does not appear is:
\[ P(\text{Vijay does not appear}) = 1 - v = 1 - \frac{7}{25} = \frac{18}{25} \]
Finding the Desired Probability
The probability that Ajay will appear in the exam and Vijay will not appear is given by:
\[ P(\text{Ajay appears}) \times P(\text{Vijay does not appear}) = \frac{5}{7} \times \frac{18}{25} \]
Calculating the product:
\[ P(\text{Ajay appears and Vijay does not appear}) = \frac{5 \times 18}{7 \times 25} = \frac{90}{175} = \frac{18}{35} \]
Conclusion: The probability that Ajay will appear in the exam and Vijay will not appear is \( \frac{18}{35} \).
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)