Let the area of \(\triangle ABC\) be denoted by \(\Delta\). The question uses R for area, so \(\Delta = R\).
We know that the area of a triangle can also be expressed as \(\Delta = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B\).
So, \(2\Delta = ab\sin C\). Squaring this: \(4\Delta^2 = a^2b^2\sin^2 C\).
The term under the first square root is \(a^2b^2-4R^2 = a^2b^2-4\Delta^2\).
Substitute \(4\Delta^2 = a^2b^2\sin^2 C\):
\(a^2b^2 - 4\Delta^2 = a^2b^2 - a^2b^2\sin^2 C = a^2b^2(1-\sin^2 C) = a^2b^2\cos^2 C\).
So, \(\sqrt{a^2b^2-4\Delta^2} = \sqrt{a^2b^2\cos^2 C} = |ab\cos C|\).
Since ABC is an acute-angled triangle, all angles A, B, C are less than \(90^\circ\), so \(\cos A, \cos B, \cos C\) are all positive.
Thus, \(\sqrt{a^2b^2-4\Delta^2} = ab\cos C\).
Similarly,
\(\sqrt{b^2c^2-4\Delta^2} = bc\cos A\).
\(\sqrt{c^2a^2-4\Delta^2} = ca\cos B\).
The expression becomes \(ab\cos C + bc\cos A + ca\cos B\).
Using the Law of Cosines:
\(\cos C = \frac{a^2+b^2-c^2}{2ab} \Rightarrow ab\cos C = \frac{a^2+b^2-c^2}{2}\).
\(\cos A = \frac{b^2+c^2-a^2}{2bc} \Rightarrow bc\cos A = \frac{b^2+c^2-a^2}{2}\).
\(\cos B = \frac{c^2+a^2-b^2}{2ca} \Rightarrow ca\cos B = \frac{c^2+a^2-b^2}{2}\).
Summing these three terms:
Expression = \( \frac{a^2+b^2-c^2}{2} + \frac{b^2+c^2-a^2}{2} + \frac{c^2+a^2-b^2}{2} \)
\( = \frac{1}{2} [ (a^2+b^2-c^2) + (b^2+c^2-a^2) + (c^2+a^2-b^2) ] \)
\( = \frac{1}{2} [ a^2+b^2-c^2 + b^2+c^2-a^2 + c^2+a^2-b^2 ] \)
In the numerator, \(a^2-a^2+a^2 = a^2\), \(b^2+b^2-b^2 = b^2\), \(-c^2+c^2+c^2 = c^2\).
So, Numerator = \(a^2+b^2+c^2\).
Expression = \( \frac{a^2+b^2+c^2}{2} \).
This matches option (c).
\[ \boxed{\frac{a^2+b^2+c^2}{2}} \]