
Let: \[ AB = a, \quad a = 6 \]
Area of semicircle \( BQC \): \[ \text{Area} = \frac{\pi \left( \frac{a}{\sqrt{2}} \right)^2}{2} = \frac{\pi a^2}{4} \]
Area of quadrant \( BPC \): \[ \text{Area} = \frac{\pi a^2}{4} \]
The region enclosed by curves \( BPC \) and \( BQC \) corresponds exactly to the area of triangle \( ABC \).
Given: \[ \text{Area}_{\triangle ABC} = 18 \] Thus, the enclosed region area is also: \[ \boxed{18} \]

For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: