We are given 52 positive integers \( a_1, a_2, ..., a_{52} \), where:
We are to find the maximum possible value of \( a_1 \).
Then the sum of all 52 values is:
\[ \text{Sum}_{\text{all}} = 52 \bar{A} \]
Average of the other 51 numbers is \( \bar{A} + 1 \), so:
\[ \text{Sum}_{\text{excluding } a_1} = 51(\bar{A} + 1) \]
Subtract to get \( a_1 \):
\[ a_1 = 52 \bar{A} - 51(\bar{A} + 1) = 52\bar{A} - 51\bar{A} - 51 = \bar{A} - 51 \tag{1} \]
To maximize \( a_1 \), we maximize the sum of the other numbers. The best way is to assume:
Also, since \( a_{52} = a_{27} + 25 = 100 \Rightarrow a_{27} = 75 \)
\[ \text{Average of } a_2 \text{ to } a_{52} = 75 \Rightarrow \text{Sum} = 75 \times 51 = 3825 \tag{2} \]
From equation (1), average of all 52 numbers is:
\[ \bar{A} = a_1 + 51 \]
So the total sum:
\[ 52\bar{A} = 52(a_1 + 51) = 52a_1 + 2652 \]
But we already know the total must equal \( a_1 + 3825 \)
\[ \Rightarrow a_1 + 3825 = 52a_1 + 2652 \Rightarrow 1173 = 51a_1 \Rightarrow a_1 = \frac{1173}{51} = \boxed{23} \]
\[ \boxed{a_1 = 23} \]
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: