The vertices \( A_1, A_2, A_3, \dots, A_8 \) form a regular octagon inscribed in a circle with a radius of 2. We need to evaluate \( Z_8 \), which is the result of:
\(Z = (2) \times (1) \times \frac{1}{8}\)
Multiplying the terms:
\(Z_8 = 28 \times 1\)
Thus, the expression \( Z_8 - 28 \) simplifies to:
\(Z_8 - 28 = 28 - 28 = 0\)
Finally, the value of \( \text{MAX}(P_1, P_2, P_8) \) is:
\(2^9 = 512\)
Therefore, the correct answer is \( 2^9 = 512 \).
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
In mathematics, Geometry is one of the most important topics. The concepts of Geometry are defined with respect to the planes. So, Geometry is divided into three categories based on its dimensions which are one-dimensional geometry, two-dimensional geometry, and three-dimensional geometry.
Let's consider line ‘L’ is passing through the three-dimensional plane. Now, x,y, and z are the axes of the plane, and α,β, and γ are the three angles the line making with these axes. These are called the plane's direction angles. So, correspondingly, we can very well say that cosα, cosβ, and cosγ are the direction cosines of the given line L.

Read More: Introduction to Three-Dimensional Geometry