The set \( A \) includes all points \( (x, y) \) such that \( |x + y| \geq 3 \).
The set \( B \) includes all points \( (x, y) \) such that \( |x| + |y| \leq 3 \).
The set \( C \) is the intersection of \( A \) and \( B \) where either \( x = 0 \) or \( y = 0 \).
The points in \( C \) where \( x = 0 \) are on the line \( |y| \geq 3 \), but within the bounds of \( |x| + |y| \leq 3 \). These points are \( (0, 3) \) and \( (0, -3) \), contributing a total of \( |x| + |y| = 3 + 3 = 6 \).
The points in \( C \) where \( y = 0 \) are on the line \( |x| \geq 3 \), within the bounds of \( |x| + |y| \leq 3 \).
These points are \( (3, 0) \) and \( (-3, 0) \), contributing a total of \( |x| + |y| = 3 + 3 = 6 \). \[ \text{Total sum} = 6 + 6 = 12. \]
So, The correct answer is (4), as the sum is 12.
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.