The set \( A \) includes all points \( (x, y) \) such that \( |x + y| \geq 3 \).
The set \( B \) includes all points \( (x, y) \) such that \( |x| + |y| \leq 3 \).
The set \( C \) is the intersection of \( A \) and \( B \) where either \( x = 0 \) or \( y = 0 \).
The points in \( C \) where \( x = 0 \) are on the line \( |y| \geq 3 \), but within the bounds of \( |x| + |y| \leq 3 \). These points are \( (0, 3) \) and \( (0, -3) \), contributing a total of \( |x| + |y| = 3 + 3 = 6 \).
The points in \( C \) where \( y = 0 \) are on the line \( |x| \geq 3 \), within the bounds of \( |x| + |y| \leq 3 \).
These points are \( (3, 0) \) and \( (-3, 0) \), contributing a total of \( |x| + |y| = 3 + 3 = 6 \). \[ \text{Total sum} = 6 + 6 = 12. \]
So, The correct answer is (4), as the sum is 12.
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: