To solve the given problem, we need to understand and process the sets \(A\), \(B\), and \(C\).
Define:
Step 1: Identify points satisfying both conditions.
For points where \(x = 0\) or \(y = 0\) in set \(A\), the conditions are:
In set \(B\), the points satisfy \(|x| + |y| \leq 3\), and we need to find intersections with the conditions above.
Step 2: Calculate intersection points in \(C\).
Possible boundary values are:
These points are inside set \(B\) since \(|0| + |3| = 3\), and similarly for others.
Step 3: Calculate \(\sum_{(x, y) \in C} |x| + |y|\).
Summing these values gives \(3 + 3 + 3 + 3 = 12\).
The correct answer is: 12
The set \( A \) includes all points \( (x, y) \) such that \( |x + y| \geq 3 \).
The set \( B \) includes all points \( (x, y) \) such that \( |x| + |y| \leq 3 \).
The set \( C \) is the intersection of \( A \) and \( B \) where either \( x = 0 \) or \( y = 0 \).
The points in \( C \) where \( x = 0 \) are on the line \( |y| \geq 3 \), but within the bounds of \( |x| + |y| \leq 3 \). These points are \( (0, 3) \) and \( (0, -3) \), contributing a total of \( |x| + |y| = 3 + 3 = 6 \).
The points in \( C \) where \( y = 0 \) are on the line \( |x| \geq 3 \), within the bounds of \( |x| + |y| \leq 3 \).
These points are \( (3, 0) \) and \( (-3, 0) \), contributing a total of \( |x| + |y| = 3 + 3 = 6 \). \[ \text{Total sum} = 6 + 6 = 12. \]
So, The correct answer is (4), as the sum is 12.
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to