\[ A = \begin{pmatrix} \frac{5}{6} & -\frac{1}{3} & -\frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{3} & \frac{5}{6} \end{pmatrix}. \]
Then the value of \( \sqrt{6} (|v_1| + |v_2| + |v_3|) \) equals\[ \begin{aligned} \frac{5}{6} v_1 - \frac{1}{3} v_2 - \frac{1}{6} v_3 &= 0, \\ \frac{1}{3} v_1 + \frac{1}{3} v_2 + \frac{1}{3} v_3 &= 0, \\ -\frac{1}{6} v_1 + \frac{1}{3} v_2 + \frac{5}{6} v_3 &= 0. \end{aligned} \]
\[ |v_1| + |v_2| + |v_3| = 3 \times \frac{1}{\sqrt{3}} = \sqrt{3}. \]
\[ \sqrt{6} \times \sqrt{3} = \sqrt{18} = 4.0. \]