To verify the properties of \( R \), consider all \( (x_1, y_1), (x_2, y_2) \in R \) where \( x_1, y_1 \in \mathbb{N} \).
Thus, only statement (I) is correct.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: