Let \(A=\begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix}\) and let \(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\)be an eigenvector corresponding to the smallest eigenvalue of A, satisfying \(x^2_1+x^2_2+x^2_3=1\). Then the value of |x1| + |x2| + |x3| equals __________ (round off to 2 decimal places)