Step 1: Understanding the series.
We are given that \( a_n = \sqrt{n} \) and \( s_n = \sum_{k=1}^n a_k = \sum_{k=1}^n \sqrt{k} \). We need to evaluate the limit:
\[
\lim_{n \to \infty} \left( \frac{a_n}{s_n} \Big/ \ln \left( 1 - \frac{a_n}{s_n} \right) \right)
\]
Step 2: Approximation for large \( n \).
For large \( n \), \( a_n = \sqrt{n} \), and the sum \( s_n \) is approximately \( \int_1^n \sqrt{x} dx \), which gives:
\[
s_n \approx \frac{2}{3} n^{3/2}
\]
Thus, the ratio \( \frac{a_n}{s_n} \) is:
\[
\frac{a_n}{s_n} \approx \frac{\sqrt{n}}{\frac{2}{3} n^{3/2}} = \frac{3}{2n}
\]
Step 3: Applying the logarithm.
Next, we compute \( \ln \left( 1 - \frac{a_n}{s_n} \right) \). Since \( \frac{a_n}{s_n} \) is very small for large \( n \), we use the approximation \( \ln(1 - x) \approx -x \) for small \( x \):
\[
\ln \left( 1 - \frac{a_n}{s_n} \right) \approx -\frac{a_n}{s_n} = -\frac{3}{2n}
\]
Step 4: Finding the limit.
Now, we substitute this into the original expression:
\[
\lim_{n \to \infty} \left( \frac{\frac{3}{2n}}{-\frac{3}{2n}} \right) = \lim_{n \to \infty} 1 = 1
\]
Step 5: Conclusion.
Thus, the value of the limit is \( \boxed{1} \).