Let \( a_0 = 0 \) and define \( a_n = \frac{1}{2} (1 + a_{n-1}) \) for all positive integers \( n \geq 1 \). The least value of \( n \) for which \( |1 - a_n|<\frac{1}{2^{10}} \) is ______.
Let $\{a_n\}_{n \ge 1}$ be a sequence of real numbers such that $a_1 = 1, a_2 = 7$, and $a_{n+1} = \dfrac{a_n + a_{n-1}}{2}$, $n \ge 2$. Assuming that $\lim_{n \to \infty} a_n$ exists, the value of $\lim_{n \to \infty} a_n$ is
Let \(a_n\) be a sequence of real numbers such that \( a_1 = 2 \), and for \( n \geq 1 \), \( a_{n+1} = \frac{2a_n + 1}{a_n + 1} \).