Question:

Let $A=\begin{bmatrix}1&2\\ -5&1\end{bmatrix} $and$ A^{1} = xA + yI$, then the values of $x$ and $y$ respectively are

Updated On: Jul 6, 2022
  • $\frac{-1}{11},\frac{2}{11}$
  • $\frac{-1}{11},\frac{-2}{11}$
  • $\frac{1}{11},\frac{2}{11}$
  • $\frac{1}{11},\frac{-2}{11}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given,$ A=\begin{bmatrix}1&2\\ -5&1\end{bmatrix}$ we have $A=IA$ $\therefore\begin{bmatrix}1&2\\ -5&1\end{bmatrix}=\begin{bmatrix}1&0\\ 0&1\end{bmatrix}A$ Applying $R_{2}\rightarrow R_{2}+ 5R_{1}$, we get $\begin{bmatrix}1&2\\ 0&11\end{bmatrix}=\begin{bmatrix}1&0\\ 5&1\end{bmatrix}A$ Applying $R_{2}\rightarrow \frac{1}{11} R_{2}$, we get $\begin{bmatrix}1&2\\ 0&1\end{bmatrix}=\begin{bmatrix}1&0\\ \frac{5}{11}&\frac{1}{11}\end{bmatrix}A$ Applying $R_{1}\rightarrow R_{1}+ 2R_{2}$, we get $\begin{bmatrix}1&0\\ 0&1\end{bmatrix}=\begin{bmatrix}\frac{1}{11}&-\frac{2}{11}\\ \frac{5}{11}&\frac{1}{11}\end{bmatrix}A$ $\therefore A^{-1}=\frac{1}{11}\begin{bmatrix}1&-2\\ 5&1\end{bmatrix}$ Also, $A^{-1 }=xA+yI $ $\Rightarrow \frac{1}{11}\begin{bmatrix}1&-2\\ 5&1\end{bmatrix}=\begin{bmatrix}x&2x\\ -5x&x\end{bmatrix}+\begin{bmatrix}y&0\\ 0&y\end{bmatrix}$ $\Rightarrow \frac{1}{11}\begin{bmatrix}1&-2\\ 5&1\end{bmatrix}=\begin{bmatrix}x+y&2x\\ -5x&x+y\end{bmatrix}$ $\Rightarrow x+y=\frac{1}{11}, 2x = -\frac{2}{11}$ $\Rightarrow x = -\frac{1}{11}, y=\frac{2}{11}$
Was this answer helpful?
0
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.