\[ \begin{vmatrix} 1-\lambda & 0 & 0 \\ 0 & 1-\lambda & 1 \\ 1 & 0 & -\lambda \end{vmatrix} = 0 \]
\[ (1-\lambda)((1-\lambda)(-\lambda) - 0) - 0 + 0 = 0 \]
\[ (1-\lambda)(-\lambda(1-\lambda)) = 0 \implies -\lambda(1-\lambda)^2 = 0 \implies \lambda( \lambda^2 - 2\lambda + 1) = 0 \implies \lambda^3 - 2\lambda^2 + \lambda = 0 \]
By the Cayley-Hamilton theorem, \( A \) satisfies this equation:\[ A^3 - 2A^2 + A = O \implies A^3 = 2A^2 - A \]
Find a general pattern for \(A^n\):\[ A^{2025} = (2025-1)A^2 - (2025-2)A = 2024A^2 - 2023A \]
\[ A^{2020} = (2020-1)A^2 - (2020-2)A = 2019A^2 - 2018A \]
Now, subtract the two:\[ A^{2025} - A^{2020} = (2024A^2 - 2023A) - (2019A^2 - 2018A) \]
\[ = (2024 - 2019)A^2 - (2023 - 2018)A = 5A^2 - 5A \]
Compare with the options:\[ A^6 = (6-1)A^2 - (6-2)A = 5A^2 - 4A \]
So, \(A^6 - A = (5A^2 - 4A) - A = 5A^2 - 5A\). Since both \(A^{2025} - A^{2020}\) and \(A^6 - A\) simplify to the same expression \(5A^2 - 5A\), they are equal.The value of the determinant where \( \omega \) is cube root of unity is \[ \begin{vmatrix} \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \end{vmatrix} \]



