Let \( A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \), where \( \theta \in \mathbb{R} \). Then \( A^n \), for any positive integer \( n \), is equal to:
Show Hint
The \( n \)-th power of a 2D rotation matrix is equivalent to a rotation by \( n\theta \), not \( \theta^n \) or scalar multiplication.
Step 1: Recognize the structure of the matrix.
The matrix \( A = \begin{bmatrix} \cos\theta & -\sin\theta \sin\theta & \cos\theta \end{bmatrix} \) is a standard rotation matrix.
It represents a counterclockwise rotation by angle \( \theta \) in the 2D plane.
Step 2: Apply matrix powers.
The matrix \( A^n \) corresponds to rotating by \( \theta \) \( n \)-times, i.e., a total rotation of \( n\theta \).
Hence,
\[
A^n = \begin{bmatrix}
\cos(n\theta) & -\sin(n\theta) \\
\sin(n\theta) & \cos(n\theta)
\end{bmatrix}
\]
Step 3: Eliminate incorrect options.
- Option (2): Incorrect because \( \cos(\theta^n) \neq \cos(n\theta) \) in general.
- Option (3): Incorrect as matrix powers are not the same as scalar multiplication.
- Option (4): Incorrect since Option (1) is valid.
\[
\boxed{A^n = \begin{bmatrix}
\cos(n\theta) & -\sin(n\theta)
\sin(n\theta) & \cos(n\theta)
\end{bmatrix}}
\]