Let’s compute for different values of \( k \):
Now compute the HCF of these results: \[ \gcd(12, 50, 216) = 2 \] So, \( A = 2 \)
We simplify: \[ 4^k + 3(4^k) + 4^{k+2} = 4^k(1 + 3) + 4^{k+2} = 4^{k+1} + 4^{k+2} = 4^{k+1}(1 + 4) = 5 \cdot 4^{k+1} \]
Evaluate for different values of \( k \):
Now compute the HCF: \[ \gcd(80, 320, 1280) = 80 \] So, \( B = 80 \)
\[ A + B = 2 + 80 = \boxed{82} \]
\( \boxed{82} \)
Let \( A \) be the HCF of the expression \( 3^k + 4^k + 5^k \) for different values of \( k \).
For \( k = 1 \):
\( 3^1 + 4^1 + 5^1 = 3 + 4 + 5 = 12 \)
For \( k = 2 \):
\( 3^2 + 4^2 + 5^2 = 9 + 16 + 25 = 50 \)
For \( k = 3 \):
\( 3^3 + 4^3 + 5^3 = 27 + 64 + 125 = 216 \)
Now compute the HCF of \( 12, 50, 216 \):
\[ \gcd(12, 50, 216) = 2 \] Hence, \( A = 2 \).
Consider this algebraic manipulation:
\( 4^k + 3(4^k) + 4^{k+2} \)
Simplifying step-by-step:
When \( k = 1 \):
\[ B = 5 \times 4^{1+1} = 5 \times 4^2 = 5 \times 16 = 80 \]
Now combine both results:
\[ A + B = 2 + 80 = \boxed{82} \]
\( \boxed{82} \)