Let $|x| = k$.
Then the given equation becomes:
$2k(k^2 + 1) = 5k^2$
Expanding both sides:
$2k^3 + 2k = 5k^2$
Bringing all terms to one side:
$2k^3 - 5k^2 + 2k = 0$
Factor out $k$:
$k(2k^2 - 5k + 2) = 0$
Now solve the quadratic:
$2k^2 - 5k + 2 = 0$
Using factorization:
$2k^2 - 4k - k + 2 = 0$
$2k(k - 2) -1(k - 2) = 0$
$(2k - 1)(k - 2) = 0$
So the solutions are:
$k = 0$, $k = \dfrac{1}{2}$, or $k = 2$
Since $k = |x|$, we have:
$|x| = 0 \Rightarrow x = 0$
$|x| = \dfrac{1}{2} \Rightarrow x = \pm \dfrac{1}{2}$
$|x| = 2 \Rightarrow x = \pm 2$
So the possible values of $x$ are:
$x = 0,\ \dfrac{1}{2},\ -\dfrac{1}{2},\ 2,\ -2$
Among these, the integral (whole number) values are:
$x = 0,\ 2,\ -2$
∴ There are 3 integral solutions to the equation $2|x|(x^2+1) = 5x^2$.