For quadratic equation \(ax^2+bx+c=0\), the roots are real and distinct if \(b^2−4ac>0\)We have, \(x^2−4x−log_2A=0\)\(∴(−4)^2−4×1×(−log_2A)>0\)
\(⇒16+4log_2A>0\)
\(⇒log_2A>−4\)
\(⇒A>2−4\)
\(⇒A>116\)