Let A be a nonsingular square matrix of order 3×3.Then IadjAI is equal to
\(\mid A\mid\)
\(\mid A\mid2\)
\(\mid A\mid3\)
\(3\mid A\mid\)
We know that
(adj A)A=\(\mid A\mid I\)=\(\begin{bmatrix}\mid A\mid &0&0\\0&\mid A\mid& 0\\0&0&\mid A\mid\end{bmatrix}\)
\(\Rightarrow \)\(\mid adjA)A\mid\)=\(\begin{vmatrix}\mid A\mid &0&0\\0&\mid A\mid& 0\\0&0&\mid A\mid\end{vmatrix}\)
\(\Rightarrow \mid adjA \mid A\mid \mid\)=IAI3 \(\begin{vmatrix}1&0&0\\0&1& 0\\0&0&1\end{vmatrix}\)=\(\mid A \mid^3(I)\)
\(\therefore \mid adjA \mid= \mid A \mid^2\)
Hence, the correct answer is B
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
