Let A be a nonsingular square matrix of order 3×3.Then IadjAI is equal to
\(\mid A\mid\)
\(\mid A\mid2\)
\(\mid A\mid3\)
\(3\mid A\mid\)
We know that
(adj A)A=\(\mid A\mid I\)=\(\begin{bmatrix}\mid A\mid &0&0\\0&\mid A\mid& 0\\0&0&\mid A\mid\end{bmatrix}\)
\(\Rightarrow \)\(\mid adjA)A\mid\)=\(\begin{vmatrix}\mid A\mid &0&0\\0&\mid A\mid& 0\\0&0&\mid A\mid\end{vmatrix}\)
\(\Rightarrow \mid adjA \mid A\mid \mid\)=IAI3 \(\begin{vmatrix}1&0&0\\0&1& 0\\0&0&1\end{vmatrix}\)=\(\mid A \mid^3(I)\)
\(\therefore \mid adjA \mid= \mid A \mid^2\)
Hence, the correct answer is B
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to