Step 1: Simplify \( |3\operatorname{adj}(2\operatorname{adj}(|A|A))| \)
Using determinant properties:
\[ |3\operatorname{adj}(2\operatorname{adj}(|A|A))| = |3| \times |\operatorname{adj}(2)| \times |\operatorname{adj}(|A|A)|. \]
1. Simplify \( |\operatorname{adj}(|A|A)| \):
Using the property \( |\operatorname{adj}(A)| = |A|^{n-1} \), where \( n = 4 \):
\[ |\operatorname{adj}(|A|A)| = |A|^4. \]
2. Simplify \( |\operatorname{adj}(2)| \):
Using \( \operatorname{adj}(kA) = k^{n-1}\operatorname{adj}(A) \):
\[ |\operatorname{adj}(2)| = 2^{n-1} = 2^3. \]
Thus:
\[ |3\operatorname{adj}(2\operatorname{adj}(|A|A))| = 3^3 \times 2^3 \times |A|^4 \times |A|^4 = 3^3 \times 2^3 \times |A|^8. \]
Given:
\[ |3\operatorname{adj}(2\operatorname{adj}(|A|A))| = 2^{-10} \times 3^{-13}. \]
Equating powers of \( 2 \) and \( 3 \):
\[ 2^3 \times |A|^8 = 2^{-10}, \quad 3^3 \times |A|^8 = 3^{-13}. \]
Solve for \( |A| \):
\[ |A| = 2^{-1} \times 3^{-1}. \]
Step 2: Simplify \( |3\operatorname{adj}(2A)| \)
\[ |3\operatorname{adj}(2A)| = |3| \times |\operatorname{adj}(2A)| = 3^2 \times |\operatorname{adj}(2)|^2 \times |A|^2. \] \[ |3\operatorname{adj}(2A)| = 3^2 \times 2^2 \times (2^{-1} \times 3^{-1})^2 = 2^4 \times 3^1. \]
Step 3: Compute \( |3m + 2n| \)
Given \( |A| = 2^m \cdot 3^n \), substitute \( m = -4 \), \( n = -1 \):
\[ 3m + 2n = 3(-4) + 2(-1) = -12 - 2 = -14. \] \[ |3m + 2n| = 14. \]