If \( B = \begin{bmatrix} 1 & 3 \\ 2 & \alpha \end{bmatrix} \) is the adjoint of a matrix \( A \) and \( |A| = 2 \), then the value of \( \alpha \) is: 
    
    Step 1: Recall the properties of adjoint matrices
    The adjoint of a matrix \( A \), denoted as \( \text{adj}(A) \), is the transpose of the cofactor matrix of \( A \). If \( A \) is a 2x2 matrix, then:
    \[
    \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
    \]
    where \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \). Thus, we have the following relationships:
    \[
    B = \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
    \]
    
    Step 2: Compare the matrices
    From the problem statement, we know:
    \[
    B = \begin{bmatrix} 1 & 3 \\ 2 & \alpha \end{bmatrix}
    \]
    By comparing with the general form of \( \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \), we can deduce:
    \[
    d = 1, \quad -b = 3, \quad -c = 2, \quad a = \alpha
    \]
    Thus, we have:
    \[
    b = -3, \quad c = -2, \quad a = \alpha
    \]
    
    Step 3: Use the property \( A \times \text{adj}(A) = |A| \cdot I \)
    The property of the adjoint matrix states that:
    \[
    A \times \text{adj}(A) = |A| \cdot I
    \]
    where \( I \) is the identity matrix and \( |A| \) is the determinant of \( A \). Since \( |A| = 2 \), we have:
    \[
    A \times \text{adj}(A) = 2 \cdot I
    \]
    
    Step 4: Write the matrix \( A \) and calculate the product
    Let \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha & -3 \\ -2 & 1 \end{bmatrix} \). Now, compute the product \( A \times \text{adj}(A) \):
    \[
    A \times \text{adj}(A) = \begin{bmatrix} \alpha & -3 \\ -2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & \alpha \end{bmatrix}
    \]
    Multiplying the matrices:
    \[
    A \times \text{adj}(A) = \begin{bmatrix} \alpha \cdot 1 + (-3) \cdot 2 & \alpha \cdot 3 + (-3) \cdot \alpha \\ (-2) \cdot 1 + 1 \cdot 2 & (-2) \cdot 3 + 1 \cdot \alpha \end{bmatrix}
    \]
    Simplifying the entries:
    \[
    A \times \text{adj}(A) = \begin{bmatrix} \alpha - 6 & 0 \\ 0 & -6 + \alpha \end{bmatrix}
    \]
    
    Step 5: Set the product equal to \( 2I \)
    From the property \( A \times \text{adj}(A) = 2 \cdot I \), we know that:
    \[
    A \times \text{adj}(A) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
    \]
    Therefore, equating the two matrices:
    \[
    \begin{bmatrix} \alpha - 6 & 0 \\ 0 & \alpha - 6 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
    \]
    From this, we get:
    \[
    \alpha - 6 = 2
    \]
    Solving for \( \alpha \):
    \[
    \alpha = 8
    \]
    
    Conclusion:
    The value of \( \alpha \) is \( \boxed{8} \).