If \( B = \begin{bmatrix} 1 & 3 \\ 2 & \alpha \end{bmatrix} \) is the adjoint of a matrix \( A \) and \( |A| = 2 \), then the value of \( \alpha \) is:
Step 1: Recall the properties of adjoint matrices
The adjoint of a matrix \( A \), denoted as \( \text{adj}(A) \), is the transpose of the cofactor matrix of \( A \). If \( A \) is a 2x2 matrix, then:
\[
\text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
\]
where \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \). Thus, we have the following relationships:
\[
B = \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
\]
Step 2: Compare the matrices
From the problem statement, we know:
\[
B = \begin{bmatrix} 1 & 3 \\ 2 & \alpha \end{bmatrix}
\]
By comparing with the general form of \( \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \), we can deduce:
\[
d = 1, \quad -b = 3, \quad -c = 2, \quad a = \alpha
\]
Thus, we have:
\[
b = -3, \quad c = -2, \quad a = \alpha
\]
Step 3: Use the property \( A \times \text{adj}(A) = |A| \cdot I \)
The property of the adjoint matrix states that:
\[
A \times \text{adj}(A) = |A| \cdot I
\]
where \( I \) is the identity matrix and \( |A| \) is the determinant of \( A \). Since \( |A| = 2 \), we have:
\[
A \times \text{adj}(A) = 2 \cdot I
\]
Step 4: Write the matrix \( A \) and calculate the product
Let \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha & -3 \\ -2 & 1 \end{bmatrix} \). Now, compute the product \( A \times \text{adj}(A) \):
\[
A \times \text{adj}(A) = \begin{bmatrix} \alpha & -3 \\ -2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & \alpha \end{bmatrix}
\]
Multiplying the matrices:
\[
A \times \text{adj}(A) = \begin{bmatrix} \alpha \cdot 1 + (-3) \cdot 2 & \alpha \cdot 3 + (-3) \cdot \alpha \\ (-2) \cdot 1 + 1 \cdot 2 & (-2) \cdot 3 + 1 \cdot \alpha \end{bmatrix}
\]
Simplifying the entries:
\[
A \times \text{adj}(A) = \begin{bmatrix} \alpha - 6 & 0 \\ 0 & -6 + \alpha \end{bmatrix}
\]
Step 5: Set the product equal to \( 2I \)
From the property \( A \times \text{adj}(A) = 2 \cdot I \), we know that:
\[
A \times \text{adj}(A) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\]
Therefore, equating the two matrices:
\[
\begin{bmatrix} \alpha - 6 & 0 \\ 0 & \alpha - 6 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\]
From this, we get:
\[
\alpha - 6 = 2
\]
Solving for \( \alpha \):
\[
\alpha = 8
\]
Conclusion:
The value of \( \alpha \) is \( \boxed{8} \).