Question:

Let $A$ be a matrix such that $A^2 = I$, where $I$ is an identity matrix. Then $(I + A)^4 - 8A$ is equal to:

Updated On: Nov 28, 2024
  • $8 I$

  • $5 I$

  • 8(I + A)
  • 5(I - A)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given \(A^2 = I\), the identity matrix, we analyze \((I + A)^4\):

\[(I + A)^2 = I^2 + 2IA + A^2 = I + 2A + I = 2I + 2A\]

\[(I + A)^4 = ((I + A)^2)^2 = (2I + 2A)^2\]

Expanding \((2I + 2A)^2\):

\[(2I + 2A)^2 = 4I^2 + 8IA + 4A^2\]

Since \(A^2 = I\), substitute \(4A^2 = 4I\):

\[(2I + 2A)^2 = 4I + 8A + 4I = 8I + 8A\]

Now compute \((I + A)^4 - 8A\):

\[(I + A)^4 - 8A = (8I + 8A) - 8A = 8I\]

Thus, the result is:  \[8I\]

Was this answer helpful?
0
0