$8 I$
$5 I$
Given the matrix equation $A^2 = I$, it indicates that $A$ is an involutory matrix such that its own square is the identity matrix $I$. We are tasked with finding $(I + A)^4 - 8A$. Let us process this calculation step-by-step:
First, let's simplify $(I + A)^2$. Expand the square:
$(I + A)^2 = (I + A)(I + A) = I^2 + IA + AI + A^2 = I + A + A + I = 2I + 2A$.
This simplification utilizes $A^2 = I$. Now, compute $(I + A)^4$ using the result of $(I + A)^2$:
$(I + A)^4 = ((I + A)^2)^2 = (2I + 2A)^2$.
Further expand $(2I + 2A)^2$:
$(2I + 2A)^2 = (2(I + A))(2(I + A)) = 4(I + A)(I + A) = 4(I + A)^2 = 4(2I + 2A) = 8I + 8A$.
Now substitute $(I + A)^4 = 8I + 8A$ into the original expression $(I + A)^4 - 8A$:
$(I + A)^4 - 8A = (8I + 8A) - 8A = 8I$.
Thus, the expression $(I + A)^4 - 8A$ simplifies to $8I$.
The correct answer is $8I$.
Given \(A^2 = I\), the identity matrix, we analyze \((I + A)^4\):
\[(I + A)^2 = I^2 + 2IA + A^2 = I + 2A + I = 2I + 2A\]
\[(I + A)^4 = ((I + A)^2)^2 = (2I + 2A)^2\]
Expanding \((2I + 2A)^2\):
\[(2I + 2A)^2 = 4I^2 + 8IA + 4A^2\]
Since \(A^2 = I\), substitute \(4A^2 = 4I\):
\[(2I + 2A)^2 = 4I + 8A + 4I = 8I + 8A\]
Now compute \((I + A)^4 - 8A\):
\[(I + A)^4 - 8A = (8I + 8A) - 8A = 8I\]
Thus, the result is: \[8I\]