$8 I$
$5 I$
Given the matrix equation $A^2 = I$, it indicates that $A$ is an involutory matrix such that its own square is the identity matrix $I$. We are tasked with finding $(I + A)^4 - 8A$. Let us process this calculation step-by-step:
First, let's simplify $(I + A)^2$. Expand the square:
$(I + A)^2 = (I + A)(I + A) = I^2 + IA + AI + A^2 = I + A + A + I = 2I + 2A$.
This simplification utilizes $A^2 = I$. Now, compute $(I + A)^4$ using the result of $(I + A)^2$:
$(I + A)^4 = ((I + A)^2)^2 = (2I + 2A)^2$.
Further expand $(2I + 2A)^2$:
$(2I + 2A)^2 = (2(I + A))(2(I + A)) = 4(I + A)(I + A) = 4(I + A)^2 = 4(2I + 2A) = 8I + 8A$.
Now substitute $(I + A)^4 = 8I + 8A$ into the original expression $(I + A)^4 - 8A$:
$(I + A)^4 - 8A = (8I + 8A) - 8A = 8I$.
Thus, the expression $(I + A)^4 - 8A$ simplifies to $8I$.
The correct answer is $8I$.
Given \(A^2 = I\), the identity matrix, we analyze \((I + A)^4\):
\[(I + A)^2 = I^2 + 2IA + A^2 = I + 2A + I = 2I + 2A\]
\[(I + A)^4 = ((I + A)^2)^2 = (2I + 2A)^2\]
Expanding \((2I + 2A)^2\):
\[(2I + 2A)^2 = 4I^2 + 8IA + 4A^2\]
Since \(A^2 = I\), substitute \(4A^2 = 4I\):
\[(2I + 2A)^2 = 4I + 8A + 4I = 8I + 8A\]
Now compute \((I + A)^4 - 8A\):
\[(I + A)^4 - 8A = (8I + 8A) - 8A = 8I\]
Thus, the result is: \[8I\]
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Fill in the blank with the correct option.
The teacher believed that the student’s sudden lack of interest in class was an ..........., as he had always been enthusiastic and attentive.