$8 I$
$5 I$
Given \(A^2 = I\), the identity matrix, we analyze \((I + A)^4\):
\[(I + A)^2 = I^2 + 2IA + A^2 = I + 2A + I = 2I + 2A\]
\[(I + A)^4 = ((I + A)^2)^2 = (2I + 2A)^2\]
Expanding \((2I + 2A)^2\):
\[(2I + 2A)^2 = 4I^2 + 8IA + 4A^2\]
Since \(A^2 = I\), substitute \(4A^2 = 4I\):
\[(2I + 2A)^2 = 4I + 8A + 4I = 8I + 8A\]
Now compute \((I + A)^4 - 8A\):
\[(I + A)^4 - 8A = (8I + 8A) - 8A = 8I\]
Thus, the result is: \[8I\]
List-I | List-II | ||
A | Megaliths | (I) | Decipherment of Brahmi and Kharoshti |
B | James Princep | (II) | Emerged in first millennium BCE |
C | Piyadassi | (III) | Means pleasant to behold |
D | Epigraphy | (IV) | Study of inscriptions |