Question:

Let $A$ be a $3 \times 3$ matrix. If $\lambda_1, \lambda_2, \lambda_3$ are the eigenvalues of $A$, then the eigenvalues of the matrix $(I + aA)^{-1}(I + bA)$, where $a, b$ are scalars such that $a \lambda_i \neq -1$ and $b \lambda_i \neq -1$ for $i = 1, 2, 3$, are:

Show Hint

For matrices, if \(\lambda\) is an eigenvalue of \(A\), then for any polynomial \(p(A)\), \(p(\lambda)\) is the corresponding eigenvalue of \(p(A)\). Also, for invertible matrices, eigenvalues of inverses are reciprocals of the eigenvalues.
Updated On: May 22, 2025
  • \(\frac{b \lambda_1}{1 + a \lambda_1}, \frac{b \lambda_2}{1 + a \lambda_2}, \frac{b \lambda_3}{1 + a \lambda_3}\)
  • \(\frac{1 + b \lambda_1}{1 + a \lambda_1}, \frac{1 + b \lambda_2}{a \lambda_2}, \frac{1 + b \lambda_3}{a \lambda_3}\)
  • \(\frac{1 + a \lambda_1}{1 + b \lambda_1}, \frac{1 + a \lambda_2}{1 + b \lambda_2}, \frac{1 + a \lambda_3}{1 + b \lambda_3}\)
  • \(\frac{1 + b \lambda_1}{1 + a \lambda_1}, \frac{1 + b \lambda_2}{1 + a \lambda_2}, \frac{1 + b \lambda_3}{1 + a \lambda_3}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Since \(\lambda_i\) are eigenvalues of \(A\), for each \(i\), \(A \mathbf{v}_i = \lambda_i \mathbf{v}_i\), where \(\mathbf{v}_i\) are the eigenvectors. Consider the matrix \(M = (I + aA)^{-1}(I + bA)\). We want eigenvalues \(\mu_i\) of \(M\). For the eigenvector \(\mathbf{v}_i\), \[ (I + aA) \mathbf{v}_i = (I + a \lambda_i) \mathbf{v}_i, \] and hence \[ (I + aA)^{-1} \mathbf{v}_i = \frac{1}{1 + a \lambda_i} \mathbf{v}_i. \] Similarly, \[ (I + bA) \mathbf{v}_i = (I + b \lambda_i) \mathbf{v}_i. \] Therefore, \[ M \mathbf{v}_i = (I + aA)^{-1}(I + bA) \mathbf{v}_i = (I + aA)^{-1} (1 + b \lambda_i) \mathbf{v}_i = \frac{1 + b \lambda_i}{1 + a \lambda_i} \mathbf{v}_i. \] Thus the eigenvalues of \(M\) are: \[ \mu_i = \frac{1 + b \lambda_i}{1 + a \lambda_i}, \quad i = 1, 2, 3. \]

Was this answer helpful?
0
0