Since \(\lambda_i\) are eigenvalues of \(A\), for each \(i\), \(A \mathbf{v}_i = \lambda_i \mathbf{v}_i\), where \(\mathbf{v}_i\) are the eigenvectors. Consider the matrix \(M = (I + aA)^{-1}(I + bA)\). We want eigenvalues \(\mu_i\) of \(M\). For the eigenvector \(\mathbf{v}_i\), \[ (I + aA) \mathbf{v}_i = (I + a \lambda_i) \mathbf{v}_i, \] and hence \[ (I + aA)^{-1} \mathbf{v}_i = \frac{1}{1 + a \lambda_i} \mathbf{v}_i. \] Similarly, \[ (I + bA) \mathbf{v}_i = (I + b \lambda_i) \mathbf{v}_i. \] Therefore, \[ M \mathbf{v}_i = (I + aA)^{-1}(I + bA) \mathbf{v}_i = (I + aA)^{-1} (1 + b \lambda_i) \mathbf{v}_i = \frac{1 + b \lambda_i}{1 + a \lambda_i} \mathbf{v}_i. \] Thus the eigenvalues of \(M\) are: \[ \mu_i = \frac{1 + b \lambda_i}{1 + a \lambda_i}, \quad i = 1, 2, 3. \]
Suppose that 2 is an eigenvalue of the matrix
Then the value of \( \alpha \) is equal to (Answer in integer):
A shaft has diameter $20^{+0.05}_{-0.15}$ mm and a hole diameter $20^{+0.20}_{-0.10}$ mm. When these are assembled, then what is the nature of fit yield?