\[\det(A)=6,\quad \operatorname{adj}(A)=\begin{pmatrix}1&-1&2\\5&7&1\\-1&1&1\end{pmatrix}.\]
\[\text{For any invertible }3\times 3\text{ matrix: } A\,\operatorname{adj}(A)=\det(A)\,I.\]
\[\Rightarrow A = \det(A)\,(\operatorname{adj}(A))^{-1}.\]
\[\operatorname{tr}(A) = 6\,\operatorname{tr}\!\left((\operatorname{adj}(A))^{-1}\right).\]
\[\operatorname{tr}(\operatorname{adj}(A)) = 1 + 7 + 1 = 9.\]
\[\text{Let eigenvalues of }A\text{ be }\lambda_1,\lambda_2,\lambda_3.\]
\[\text{Eigenvalues of }\operatorname{adj}(A)\text{ are } \frac{6}{\lambda_1},\,\frac{6}{\lambda_2},\,\frac{6}{\lambda_3}.\]
\[\operatorname{tr}(\operatorname{adj}(A)) = \frac{6}{\lambda_1} + \frac{6}{\lambda_2} + \frac{6}{\lambda_3} = 9.\]
\[\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3} = 1.5.\]
\[\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3} = \frac{\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1}{\lambda_1\lambda_2\lambda_3}.\]
\[\lambda_1\lambda_2\lambda_3 = \det(A)=6.\]
\[\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1 = 1.5 \times 6 = 9.\]
\[\text{Characteristic polynomial coefficient: } \lambda_1+\lambda_2+\lambda_3=\operatorname{tr}(A).\]
\[\text{Direct computation gives } A = 6(\operatorname{adj}(A))^{-1}.\]
\[A = \begin{pmatrix} 3.5 & 0.5 & -4.0 \\ -3.0 & 1.0 & 4.0 \\ 0.5 & -0.5 & 1.0 \end{pmatrix} \]
\[\operatorname{tr}(A) = 3.5 + 1 + 1 = 3.5.\]
\[\boxed{3.50}\]
Match List-I with List-II
| List-I (Matrix) | List-II (Inverse of the Matrix) |
|---|---|
| (A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
| (B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
| (C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
| (D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |