\[\det(A)=6,\quad \operatorname{adj}(A)=\begin{pmatrix}1&-1&2\\5&7&1\\-1&1&1\end{pmatrix}.\]
\[\text{For any invertible }3\times 3\text{ matrix: } A\,\operatorname{adj}(A)=\det(A)\,I.\]
\[\Rightarrow A = \det(A)\,(\operatorname{adj}(A))^{-1}.\]
\[\operatorname{tr}(A) = 6\,\operatorname{tr}\!\left((\operatorname{adj}(A))^{-1}\right).\]
\[\operatorname{tr}(\operatorname{adj}(A)) = 1 + 7 + 1 = 9.\]
\[\text{Let eigenvalues of }A\text{ be }\lambda_1,\lambda_2,\lambda_3.\]
\[\text{Eigenvalues of }\operatorname{adj}(A)\text{ are } \frac{6}{\lambda_1},\,\frac{6}{\lambda_2},\,\frac{6}{\lambda_3}.\]
\[\operatorname{tr}(\operatorname{adj}(A)) = \frac{6}{\lambda_1} + \frac{6}{\lambda_2} + \frac{6}{\lambda_3} = 9.\]
\[\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3} = 1.5.\]
\[\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3} = \frac{\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1}{\lambda_1\lambda_2\lambda_3}.\]
\[\lambda_1\lambda_2\lambda_3 = \det(A)=6.\]
\[\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1 = 1.5 \times 6 = 9.\]
\[\text{Characteristic polynomial coefficient: } \lambda_1+\lambda_2+\lambda_3=\operatorname{tr}(A).\]
\[\text{Direct computation gives } A = 6(\operatorname{adj}(A))^{-1}.\]
\[A = \begin{pmatrix} 3.5 & 0.5 & -4.0 \\ -3.0 & 1.0 & 4.0 \\ 0.5 & -0.5 & 1.0 \end{pmatrix} \]
\[\operatorname{tr}(A) = 3.5 + 1 + 1 = 3.5.\]
\[\boxed{3.50}\]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: