Find the value of \( k = ay - bx \).
Let \( \vec{a} = (a, b) \), and \( \vec{x} = (x, y) \). Then:
Using the dot product formula:
\[ \vec{a} \cdot \vec{x} = |\vec{a}||\vec{x}|\cos\theta = 5 \times 13 \times \cos\theta = 65 \] \[ \Rightarrow \cos\theta = \frac{65}{65} = 1 \Rightarrow \theta = 0^\circ \]
This means \( \vec{a} \) and \( \vec{x} \) are in the same direction (parallel).
Since the vectors are parallel, we can write:
\[ (a, b) = m(x, y) \Rightarrow a = mx,\quad b = my \]
Substituting:
\[ k = ay - bx = (my)y - (mx)x = m(y^2 - x^2) \]
Since the vectors are proportional, \( y = \pm x \Rightarrow y^2 = x^2 \)
\[ \Rightarrow y^2 - x^2 = 0 \Rightarrow k = m \cdot 0 = 0 \]
\( \boxed{k = 0} \)