Find the value of \( k = ay - bx \).
Let \( \vec{a} = (a, b) \), and \( \vec{x} = (x, y) \). Then:
Using the dot product formula:
\[ \vec{a} \cdot \vec{x} = |\vec{a}||\vec{x}|\cos\theta = 5 \times 13 \times \cos\theta = 65 \] \[ \Rightarrow \cos\theta = \frac{65}{65} = 1 \Rightarrow \theta = 0^\circ \]
This means \( \vec{a} \) and \( \vec{x} \) are in the same direction (parallel).
Since the vectors are parallel, we can write:
\[ (a, b) = m(x, y) \Rightarrow a = mx,\quad b = my \]
Substituting:
\[ k = ay - bx = (my)y - (mx)x = m(y^2 - x^2) \]
Since the vectors are proportional, \( y = \pm x \Rightarrow y^2 = x^2 \)
\[ \Rightarrow y^2 - x^2 = 0 \Rightarrow k = m \cdot 0 = 0 \]
\( \boxed{k = 0} \)
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: