We are given the expression:
\[ T_{r+1} = \ ^4C_r (ax^2)^{(4-r)} \times \left(\frac{70}{27bx}\right)^r \]
For the coefficient of \( x^5 \), we solve for \( r \):
\[ 8 - 2r - r = 5 \quad \Rightarrow \quad r = 1 \]
Thus, the coefficient of \( x^5 \) is:
\[ \ ^4C_1 a^3 \left( \frac{70}{27b} \right) \]
Next, for the expression:
\[ t_{r+1} = \ ^7C_r (ax)^{7-r} \left( -\frac{1}{bx^2} \right)^r \]
For the coefficient of \( x^{-5} \), we solve for \( r \):
\[ 7 - r - 2r = -5 \quad \Rightarrow \quad r = 4 \]
The coefficient of \( x^{-5} \) is:
\[ \ ^7C_4 a^3 \frac{1}{b^4} \]
Thus, we have the equation:
\[ 2b = 3 \]
The value of \( 2b \) is \( \boxed{3} \).
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is