To ensure continuity at \(x = 1\):
\(f(1^-) = 4 + a, \quad f(1^+) = b + 2.\)
Setting \(f(1^-) = f(1^+)\):
\(4 + a = b + 2 \Rightarrow a - b = -2.\)
To ensure differentiability at \(x = 1\):
\(f'(1^-) = 5, \quad f'(1^+) = b.\)
Setting \(f'(1^-) = f'(1^+)\):
\(b = 5.\)
Substituting \(b = 5\) into \(a - b = -2\):
\(a = 3.\)
Calculate \(\int_{-2}^{2} f(x) \, dx\):
\(\int_{-2}^{2} f(x) \, dx = \int_{-2}^{1} (x^2 + 3x + 3) \, dx + \int_{1}^{2} (5x + 2) \, dx.\)
Evaluating each integral:
- First integral:
\(\int_{-2}^{1} (x^2 + 3x + 3) \, dx = \frac{15}{2}.\)
- Second integral:
\(\int_{1}^{2} (5x + 2) \, dx = 17.\)
The total value is:
\(\int_{-2}^{2} f(x) \, dx = 17.\)
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).