To ensure continuity at \(x = 1\):
\(f(1^-) = 4 + a, \quad f(1^+) = b + 2.\)
Setting \(f(1^-) = f(1^+)\):
\(4 + a = b + 2 \Rightarrow a - b = -2.\)
To ensure differentiability at \(x = 1\):
\(f'(1^-) = 5, \quad f'(1^+) = b.\)
Setting \(f'(1^-) = f'(1^+)\):
\(b = 5.\)
Substituting \(b = 5\) into \(a - b = -2\):
\(a = 3.\)
Calculate \(\int_{-2}^{2} f(x) \, dx\):
\(\int_{-2}^{2} f(x) \, dx = \int_{-2}^{1} (x^2 + 3x + 3) \, dx + \int_{1}^{2} (5x + 2) \, dx.\)
Evaluating each integral:
- First integral:
\(\int_{-2}^{1} (x^2 + 3x + 3) \, dx = \frac{15}{2}.\)
- Second integral:
\(\int_{1}^{2} (5x + 2) \, dx = 17.\)
The total value is:
\(\int_{-2}^{2} f(x) \, dx = 17.\)
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \).
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2
Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is: