\( \frac{32}{5} \)
\( \frac{25}{9} \)
Certainly! Here's the solution to the given problem formatted in HTML for CKEditor: ```html
To solve this problem, we need to go through the following steps:
Therefore, the length of the latus rectum of the ellipse is \(\frac{32}{5}\)
Substitute \(x = 0\) and \(y = \beta\) in the line equation \(5x + 7y = 50\) to find \(\beta\):
\(7\beta = 50 \Rightarrow \beta = \frac{50}{7}.\)
Thus, \(B = \left(0, \frac{50}{7}\right).\)
Using the section formula, \(P = (3, 5)\), which divides \(AB\) in the ratio \(7 : 3\).
The directrix is \(x = \frac{25}{3}\), so \(a = \frac{25}{3}\) and \(e = \frac{3a}{25}\). Given that \(ae = 3\), solving yields \(a = 5\) and \(b = 4\).
The length of the latus rectum \(LR\) is:
\(LR = \frac{2b^2}{a} = \frac{32}{5}.\)
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
The length of the latus-rectum of the ellipse, whose foci are $(2, 5)$ and $(2, -3)$ and eccentricity is $\frac{4}{5}$, is
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 