Given:
\[ A(a, b), \quad B(3, 4), \quad C(-6, -8) \]
Since \( A \) is the centroid, we have:
\[ a = 0, \quad b = 0 \implies P(3, 5) \]
To find the distance of point \( P \) from the line \( 2x + 3y - 4 = 0 \) measured parallel to the line \( x - 2y - 1 = 0 \), we first find the direction cosine.
Let the line \( x - 2y - 1 = 0 \) represent:
\[ x = 3 + r \cos \theta, \quad y = 5 + r \sin \theta \]
where \(\theta\) is the angle such that:
\[ \tan \theta = \frac{1}{2} \]
For the line parallel:
\[ r \left(2 \cos \theta + 3 \sin \theta\right) = -17 \]
Thus:
\[ r = \left| \frac{-17\sqrt{5}}{7} \right| = \frac{17\sqrt{5}}{7} \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: