Given:
The points are \( A(a, b) \), \( B(3, 4) \), and \( C(-6, -8) \), and the ratio of division is \( 2:1 \) along the line segment \( BC \). \[ \text{Ratio:} \quad \frac{C}{A} = \frac{2}{1} \]
Step 1: Finding \( A \) Coordinates:
From the given ratio, we can calculate the coordinates of \( A \). We are also given that: \[ a = 0, \quad b = 0 \] Hence, point \( A \) is \( (3, 5) \).
Step 2: Distance from \( P \) Measured Along the Line:
The distance from point \( P(3, 5) \) is measured along the line \( x - 2y - 1 = 0 \), where the coordinates \( (x, y) \) of point \( P \) satisfy the following equations: \[ x = 3 + r \cos \theta, \quad y = 5 + r \sin \theta \]
Step 3: Applying the Tangent Formula:
We are given that \( \tan \theta = \frac{1}{2} \), so: \[ r(2 \cos \theta + 3 \sin \theta) = -17 \]
Step 4: Solving for \( r \):
Simplifying the equation: \[ r = \left| \frac{-17\sqrt{5}}{7} \right| = \frac{17\sqrt{5}}{7} \]
Given:
\[ A(a, b), \quad B(3, 4), \quad C(-6, -8) \]
Since \( A \) is the centroid, we have:
\[ a = 0, \quad b = 0 \implies P(3, 5) \]
To find the distance of point \( P \) from the line \( 2x + 3y - 4 = 0 \) measured parallel to the line \( x - 2y - 1 = 0 \), we first find the direction cosine.
Let the line \( x - 2y - 1 = 0 \) represent:
\[ x = 3 + r \cos \theta, \quad y = 5 + r \sin \theta \]
where \(\theta\) is the angle such that:
\[ \tan \theta = \frac{1}{2} \]
For the line parallel:
\[ r \left(2 \cos \theta + 3 \sin \theta\right) = -17 \]
Thus:
\[ r = \left| \frac{-17\sqrt{5}}{7} \right| = \frac{17\sqrt{5}}{7} \]
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
The length of the latus-rectum of the ellipse, whose foci are $(2, 5)$ and $(2, -3)$ and eccentricity is $\frac{4}{5}$, is
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 