Given:
\(\vec{a} = -5\vec{i} + 3\vec{j} - 3\vec{k}\), \(\vec{b} = \vec{i} + 2\vec{j} - 4\vec{k}\)
Compute the cross product:
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -5 & 3 & -3 \\ 1 & 2 & -4 \end{vmatrix} \]
\[ = \vec{i}(3 \cdot -4 - (-3) \cdot 2) - \vec{j}(-5 \cdot -4 - (-3) \cdot 1) + \vec{k}(-5 \cdot 2 - 3 \cdot 1) \]
\[ = \vec{i}(-12 + 6) - \vec{j}(20 - 3) + \vec{k}(-10 - 3) \]
\[ = -6\vec{i} - 17\vec{j} - 13\vec{k} \]
Now:
\(\vec{c} = ((\vec{a} \times \vec{b}) \times \vec{i})\) ... (continuing calculations as shown)
Resulting in:
\(\vec{c} \cdot (-\vec{i} + \vec{j} + \vec{k}) = -12\)
Given vectors \( \vec{a} = -5\hat{i} + \hat{j} - 3\hat{k} \), \( \vec{b} = \hat{i} + 2\hat{j} - 4\hat{k} \), and \( \vec{c} = \left( \left( \left( \vec{a} \times \vec{b} \right) \times \hat{i} \right) \times \hat{i} \right) \times \hat{i} \), we need to compute \( \vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) \).
The vector triple product identity is \( \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \). Also, cross product is anticommutative: \( \vec{u} \times \vec{v} = - \vec{v} \times \vec{u} \). For cross products with \( \hat{i} \), we can compute step by step using determinant form.
Step 1: Compute \( \vec{a} \times \vec{b} \).
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -5 & 1 & -3 \\ 1 & 2 & -4 \end{vmatrix} = \hat{i}(1 \cdot (-4) - (-3) \cdot 2) - \hat{j}((-5) \cdot (-4) - (-3) \cdot 1) + \hat{k}((-5) \cdot 2 - 1 \cdot 1) \] \[ = \hat{i}(-4 + 6) - \hat{j}(20 + 3) + \hat{k}(-10 - 1) = 2\hat{i} - 23\hat{j} - 11\hat{k} \]Let \( \vec{p} = \vec{a} \times \vec{b} = 2\hat{i} - 23\hat{j} - 11\hat{k} \).
Step 2: Compute \( \vec{p} \times \hat{i} \).
\[ \vec{p} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -23 & -11 \\ 1 & 0 & 0 \end{vmatrix} = \hat{i}( (-23)\cdot 0 - (-11)\cdot 0 ) - \hat{j}( 2\cdot 0 - (-11)\cdot 1 ) + \hat{k}( 2\cdot 0 - (-23)\cdot 1 ) \] \[ = -\hat{j}(0 + 11) + \hat{k}(0 + 23) = -11\hat{j} + 23\hat{k} \]Let \( \vec{q} = \vec{p} \times \hat{i} = -11\hat{j} + 23\hat{k} \).
Step 3: Compute \( \vec{q} \times \hat{i} \).
\[ \vec{q} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -11 & 23 \\ 1 & 0 & 0 \end{vmatrix} = \hat{i}( (-11)\cdot 0 - 23\cdot 0 ) - \hat{j}( 0\cdot 0 - 23\cdot 1 ) + \hat{k}( 0\cdot 0 - (-11)\cdot 1 ) \] \[ = -\hat{j}(0 - 23) + \hat{k}(0 + 11) = 23\hat{j} + 11\hat{k} \]Let \( \vec{r} = \vec{q} \times \hat{i} = 23\hat{j} + 11\hat{k} \).
Step 4: Compute \( \vec{c} = \vec{r} \times \hat{i} \).
\[ \vec{r} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 23 & 11 \\ 1 & 0 & 0 \end{vmatrix} = \hat{i}( 23\cdot 0 - 11\cdot 0 ) - \hat{j}( 0\cdot 0 - 11\cdot 1 ) + \hat{k}( 0\cdot 0 - 23\cdot 1 ) \] \[ = -\hat{j}(0 - 11) + \hat{k}(0 - 23) = 11\hat{j} - 23\hat{k} \]Thus, \( \vec{c} = 11\hat{j} - 23\hat{k} \).
Step 5: Compute \( \vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) \).
\[ \vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) = (0\hat{i} + 11\hat{j} - 23\hat{k}) \cdot (-\hat{i} + \hat{j} + \hat{k}) \] \[ = 0\cdot(-1) + 11\cdot 1 + (-23)\cdot 1 = 0 + 11 - 23 = -12 \]Therefore, \( \vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) = \mathbf{-12} \).
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 