Given:
\(\vec{a} = -5\vec{i} + 3\vec{j} - 3\vec{k}\), \(\vec{b} = \vec{i} + 2\vec{j} - 4\vec{k}\)
Compute the cross product:
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -5 & 3 & -3 \\ 1 & 2 & -4 \end{vmatrix} \]
\[ = \vec{i}(3 \cdot -4 - (-3) \cdot 2) - \vec{j}(-5 \cdot -4 - (-3) \cdot 1) + \vec{k}(-5 \cdot 2 - 3 \cdot 1) \]
\[ = \vec{i}(-12 + 6) - \vec{j}(20 - 3) + \vec{k}(-10 - 3) \]
\[ = -6\vec{i} - 17\vec{j} - 13\vec{k} \]
Now:
\(\vec{c} = ((\vec{a} \times \vec{b}) \times \vec{i})\) ... (continuing calculations as shown)
Resulting in:
\(\vec{c} \cdot (-\vec{i} + \vec{j} + \vec{k}) = -12\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: