Given:
\(\vec{a} = -5\vec{i} + 3\vec{j} - 3\vec{k}\), \(\vec{b} = \vec{i} + 2\vec{j} - 4\vec{k}\)
Compute the cross product:
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -5 & 3 & -3 \\ 1 & 2 & -4 \end{vmatrix} \]
\[ = \vec{i}(3 \cdot -4 - (-3) \cdot 2) - \vec{j}(-5 \cdot -4 - (-3) \cdot 1) + \vec{k}(-5 \cdot 2 - 3 \cdot 1) \]
\[ = \vec{i}(-12 + 6) - \vec{j}(20 - 3) + \vec{k}(-10 - 3) \]
\[ = -6\vec{i} - 17\vec{j} - 13\vec{k} \]
Now:
\(\vec{c} = ((\vec{a} \times \vec{b}) \times \vec{i})\) ... (continuing calculations as shown)
Resulting in:
\(\vec{c} \cdot (-\vec{i} + \vec{j} + \vec{k}) = -12\)
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)