Step 1. Use the Formula for Standard Deviation:
\(\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{10} a_i^2 - \left( \frac{1}{n} \sum_{i=1}^{10} a_i \right)^2}\)
where \( n = 10 \).
Step 2. Calculate \( \sum_{i=1}^{10} a_i^2 \): We know:
\(\sum_{i=1}^{10} a_i = 50, \quad \sum_{1 \leq k < j \leq 10} a_k \cdot a_j = 1100\)
Expanding:
\(\left( \sum_{i=1}^{10} a_i \right)^2 = \sum_{i=1}^{10} a_i^2 + 2 \sum_{1 \leq k < j \leq 10} a_k \cdot a_j\)
\(2500 = \sum_{i=1}^{10} a_i^2 + 2200 \Rightarrow \sum_{i=1}^{10} a_i^2 = 300\)
Step 3. Compute Standard Deviation:
\(\sigma = \sqrt{\frac{300}{10} - \left( \frac{50}{10} \right)^2} = \sqrt{30 - 25} = \sqrt{5}\)
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: