Let A={0, 3, 4, 6, 7, 8, 9, 10 } and R be the relation defined on A such that R = {(x, y)∈A×A:x-y is odd positive integer or x-y=2}. The minimum number of elements that must be added to the relation R, so that it is a symmetric relation, is equal to _______.
Step 1: Define the relation.
- \(A = \{0, 3, 4, 6, 7, 8, 9, 10\}\).
- \(R = \{(x, y) : x - y \text{ is odd positive integer or } x - y = 2\}\).
Step 2: Check for symmetry.
- For each pair \((x, y) \in R\), ensure \((y, x) \in R\) to make \(R\) symmetric.
Step 3: Count the missing pairs.
- Add 15 pairs for odd positive differences and 4 pairs for \(x - y = 2\).
Final Answer: A minimum of 19 pairs must be added.
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 