Let A={0, 3, 4, 6, 7, 8, 9, 10 } and R be the relation defined on A such that R = {(x, y)∈A×A:x-y is odd positive integer or x-y=2}. The minimum number of elements that must be added to the relation R, so that it is a symmetric relation, is equal to _______.
Step 1: Define the relation.
- \(A = \{0, 3, 4, 6, 7, 8, 9, 10\}\).
- \(R = \{(x, y) : x - y \text{ is odd positive integer or } x - y = 2\}\).
Step 2: Check for symmetry.
- For each pair \((x, y) \in R\), ensure \((y, x) \in R\) to make \(R\) symmetric.
Step 3: Count the missing pairs.
- Add 15 pairs for odd positive differences and 4 pairs for \(x - y = 2\).
Final Answer: A minimum of 19 pairs must be added.
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
Consider the following reaction occurring in the blast furnace. \[ {Fe}_3{O}_4(s) + 4{CO}(g) \rightarrow 3{Fe}(l) + 4{CO}_2(g) \] ‘x’ kg of iron is produced when \(2.32 \times 10^3\) kg \(Fe_3O_4\) and \(2.8 \times 10^2 \) kg CO are brought together in the furnace.
The value of ‘x’ is __________ (nearest integer).
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
X g of benzoic acid on reaction with aqueous \(NaHCO_3\) release \(CO_2\) that occupied 11.2 L volume at STP. X is ________ g.
Standard entropies of \(X_2\), \(Y_2\) and \(XY_5\) are 70, 50, and 110 J \(K^{-1}\) mol\(^{-1}\) respectively. The temperature in Kelvin at which the reaction \[ \frac{1}{2} X_2 + \frac{5}{2} Y_2 \rightarrow XY_5 \quad \Delta H = -35 \, {kJ mol}^{-1} \] will be at equilibrium is (nearest integer):
37.8 g \( N_2O_5 \) was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K: \[ 2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g) \]
The total pressure at equilibrium was found to be 18.65 bar. Then, \( K_p \) is: Given: \[ R = 0.082 \, \text{bar L mol}^{-1} \, \text{K}^{-1} \]