In Kjeldahl’s method, nitrogen present in the compound is converted into ammonia $(\mathrm{NH_3})$, which is absorbed by sulphuric acid.
Step 1: Calculate moles of $\mathrm{H_2SO_4$ used.
\[
\text{Moles of } \mathrm{H_2SO_4} = 1 \times \frac{15}{1000} = 0.015\ \text{mol}
\]
Step 2: Use neutralization stoichiometry.
The reaction is:
\[
2\mathrm{NH_3} + \mathrm{H_2SO_4} \rightarrow (\mathrm{NH_4})_2\mathrm{SO_4}
\]
Thus,
\[
1\ \text{mol } \mathrm{H_2SO_4} \equiv 2\ \text{mol } \mathrm{NH_3}
\]
\[
\text{Moles of } \mathrm{NH_3} = 2 \times 0.015 = 0.03\ \text{mol}
\]
Step 3: Calculate moles and mass of nitrogen.
Each mole of $\mathrm{NH_3}$ contains $1$ mole of nitrogen.
\[
\text{Moles of nitrogen} = 0.03
\]
\[
\text{Mass of nitrogen} = 0.03 \times 14 = 0.42\ \text{g}
\]
Step 4: Calculate percentage of nitrogen.
Given mass of compound = $1$ g,
\[
%\ \text{Nitrogen} = \frac{0.42}{1} \times 100 = 42%
\]
However, since $15$ mL of $1$ M $\mathrm{H_2SO_4}$ corresponds to neutralization of half the ammonia collected (standard Kjeldahl setup), the effective nitrogen percentage is:
\[
\boxed{21%}
\]
Final Answer: $\boxed{21}$