To solve this problem, we first need to understand the distribution of the random variable \( Y \). Given that \( X_1 \sim \text{Gamma}(1,4) \), \( X_2 \sim \text{Gamma}(2,2) \), and \( X_3 \sim \text{Gamma}(3,4) \), and \( Y = X_1 + 2X_2 + X_3 \), we calculate the mean and variance of \( Y \) using properties of the Gamma distribution and the linearity of expectation.
Using the transformation, if \( Y \sim \text{Gamma}(6,4) \), then \( Z = \frac{Y}{4} \) has shape 6 and scale 1. Thus, \( Z \sim \text{Gamma}(6,1) \).
For a gamma-distributed variable \( Z \) with shape \( \alpha = 6 \) and scale \( \beta = 1 \), the expected value \( \mathbb{E}(Z^n) \) is given by:
\[ \mathbb{E}(Z^n) = \frac{\beta^n (\alpha + n - 1)!}{(\alpha - 1)!} \]
So for \( \mathbb{E}(Z^4) \), we have:
\[ \mathbb{E}(Z^4) = 1^4 \times \frac{(6 + 4 - 1)!}{(6 - 1)!} = 24 \times 23 \times 22 \times 21 = 3024 \]
This result is 3024, consistent with the range provided. Thus, the expected value \( \mathbb{E}\left(\left(\frac{Y}{4}\right)^4\right) = 3024 \).