Total profit = \(₹2,80,000\)
Dinesh’s normal share = \(\frac{1}{4} \times 2,80,000 = ₹70,000\)
He is guaranteed \(₹1,00,000\). Deficiency = \(₹30,000\)
This deficiency is borne by John and Harry in their old ratio = 2 : 1
John’s share of deficiency = \(\frac{2}{3} \times 30,000 = ₹20,000\)
Harry’s share of deficiency = \(₹10,000\)
John’s share in remaining profit = \(\frac{2}{3} \times (2,80,000 - 1,00,000) = ₹1,20,000\)
Therefore, John’s final share = \(₹1,20,000 - 20,000 = ₹1,00,000\)
Wait! Let’s check carefully:
Remaining profit after giving Dinesh = \(2,80,000 - 1,00,000 = ₹1,80,000\)
John’s share from remaining = \(\frac{2}{3} \times 1,80,000 = ₹1,20,000\)
Less his share of deficiency (\(₹20,000\))
Thus, John’s share = \(₹1,00,000\)
Hence, correct answer is (C).
Correction: The answer is (C) \(₹1,00,000\).