The reaction proceeds as follows:
\[2\text{Fe}^{3+} + 2\text{I}^- \rightarrow 2\text{Fe}^{2+} + \text{I}_2\]
\[2\text{Fe}^{2+} + \text{S}_2\text{O}_8^{2-} \rightarrow 2\text{Fe}^{3+} + 2\text{SO}_4^{2-}\]
In this reaction:
Fe$^{3+}$ oxidizes I$^-$ to I$_2$ and converts itself to Fe$^{2+}$.
Fe$^{2+}$ reduces S$_2$O$_8^{2-}$ to SO$_4^{2-}$ and converts itself back to Fe$^{3+}$
Match List I with List II:
Choose the correct answer from the options given below:
Match List I with List II:
Choose the correct answer from the options given below:
Which of the following statements are true?
A. Unlike Ga that has a very high melting point, Cs has a very low melting point.
B. On Pauling scale, the electronegativity values of N and C are not the same.
C. $Ar, K^{+}, Cl^{–}, Ca^{2+} and S^{2–}$ are all isoelectronic species.
D. The correct order of the first ionization enthalpies of Na, Mg, Al, and Si is Si $>$ Al $>$ Mg $>$ Na.
E. The atomic radius of Cs is greater than that of Li and Rb.
Choose the correct answer from the options given below:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: