The reaction proceeds as follows:
\[2\text{Fe}^{3+} + 2\text{I}^- \rightarrow 2\text{Fe}^{2+} + \text{I}_2\]
\[2\text{Fe}^{2+} + \text{S}_2\text{O}_8^{2-} \rightarrow 2\text{Fe}^{3+} + 2\text{SO}_4^{2-}\]
In this reaction:
Fe$^{3+}$ oxidizes I$^-$ to I$_2$ and converts itself to Fe$^{2+}$.
Fe$^{2+}$ reduces S$_2$O$_8^{2-}$ to SO$_4^{2-}$ and converts itself back to Fe$^{3+}$
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)