Question:

Inverse of the matrix \(\begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}\) is

Updated On: Nov 18, 2025
  • \(\begin{bmatrix} 1 & -2 & 1 \\ -1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}\)
  • \(\begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ -3 & 1 & 1 \end{bmatrix}\)
  • \(\begin{bmatrix} -1 & -1 & 0 \\ 2 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}\)
  • \(\begin{bmatrix} 3 & -2 & -3 \\ -2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To find the inverse of a given 3x3 matrix, we need to apply the following steps:

  1. Identify the matrix: The given matrix is \(\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}\).
  2. Calculate the determinant: The determinant of a 3x3 matrix \(\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}\) is computed as: \( \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \).
    • For matrix \(\mathbf{A}\): \( a = 1, \, b = 1, \, c = 0, \, d = 2, \, e = 3, \, f = 0, \, g = 1, \, h = 0, \, i = 1 \)
    • Thus, \(\text{det}(A) = 1(3\cdot1 - 0\cdot0) - 1(2\cdot1 - 0\cdot0) + 0(2\cdot0 - 3\cdot1) = 3 - 2 + 0 = 1\).
    Since the determinant is not zero, the matrix is invertible.
  3. Compute the adjoint of the matrix: The adjoint is the transpose of the cofactor matrix. For \(\mathbf{A}\), find the minors, cofactors, and then the adjoint.
    • The cofactor matrix is \( \begin{bmatrix} 3 & -2 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \).
    • Its transpose (adjoint) is \( \begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \).
  4. Calculate the inverse: Using the formula for the inverse: \(\mathbf{A}^{-1} = \frac{1}{\text{det}(A)} \text{adj}(\mathbf{A}) \), where the adjoint has been computed.
    • Thus, \(\mathbf{A}^{-1} = \frac{1}{1} \begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\).

Therefore, the inverse of the matrix \(\begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}\) is \(\begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\), which matches the correct answer provided in the options.

Was this answer helpful?
0
0