Question:

Integrate $ \frac{{{\sec }^{2}}\,({{\sin }^{-1}}x)}{\sqrt{1-{{x}^{2}}}} $

Updated On: Jun 23, 2024
  • $ \sin \,({{\tan }^{-1}}x)+c$
  • $ \tan \,({{\sec }^{-1}}x)+c $
  • $ \tan \,({{\sin }^{-1}}x)+c $
  • $ -\tan \,(co{{s}^{-1}}x)+c $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let $ l=\int{\frac{{{\sec }^{2}}({{\sin }^{-1}}x)}{\sqrt{1-{{x}^{2}}}}}dx $ Again, let $ {{\sin }^{-1}}x=t $
$ \Rightarrow $ $ \frac{dt}{dx}=\frac{1}{\sqrt{1-{{x}^{2}}}} $
$ \Rightarrow $ $ dt=\frac{1}{\sqrt{1-{{x}^{2}}}}\,dx $
$ \therefore $ $ l=\int{{{\sec }^{2}}\,t\,dt} $
$=\tan \,t+C $
$=\tan ({{\sin }^{-1}}x)+C $
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.