To integrate \( \int \sqrt{ax^2+bx+c} \, dx \):
1. Complete the square for the quadratic term \( ax^2+bx+c \) to bring it to the form \( A((x+h)^2 \pm k^2) \) or \( A(k^2 \pm (x+h)^2) \).
2. Use a substitution \( u = x+h \).
3. Apply standard integral formulas:
\( \int \sqrt{u^2+a^2} \, du = \frac{u}{2}\sqrt{u^2+a^2} + \frac{a^2}{2}\log|u+\sqrt{u^2+a^2}| + C \) or \( \frac{u}{2}\sqrt{u^2+a^2} + \frac{a^2}{2}\sinh^{-1}\left(\frac{u}{a}\right) + C \).
\( \int \sqrt{u^2-a^2} \, du = \frac{u}{2}\sqrt{u^2-a^2} - \frac{a^2}{2}\log|u+\sqrt{u^2-a^2}| + C \) or \( \frac{u}{2}\sqrt{u^2-a^2} - \frac{a^2}{2}\cosh^{-1}\left(\frac{u}{a}\right) + C \).
\( \int \sqrt{a^2-u^2} \, du = \frac{u}{2}\sqrt{a^2-u^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{u}{a}\right) + C \).