Let $f(x) = \frac{(\sin x)^5 (\cos x)^3}{x^4}$. We want to evaluate the integral $\int_{-\pi/6}^{\pi/6} f(x) dx$.
Let's check if $f(x)$ is an even or odd function.
$$f(-x) = \frac{(\sin (-x))^5 (\cos (-x))^3}{(-x)^4} = \frac{(-\sin x)^5 (\cos x)^3}{x^4} = \frac{-\sin^5 x \cos^3 x}{x^4} = -f(x)$$
Since $f(-x) = -f(x)$, the function $f(x)$ is an odd function.
The integral of an odd function over a symmetric interval $[-a, a]$ is always zero.
$$\int_{-a}^{a} f(x) dx = 0 \quad \text{if } f(x) \text{ is an odd function}$$
In this case, the interval is $[-\pi/6, \pi/6]$, which is symmetric about $0$, and the function $f(x) = \frac{(\sin x)^5 (\cos x)^3}{x^4}$ is an odd function.
Therefore,
$$\int_{-\pi/6}^{\pi/6} \frac{(\sin x)^5 (\cos x)^3}{x^4} dx = 0$$