To solve the integral $\int \frac{e^x}{\sqrt{4 - 2x}} dx$, we make a substitution to simplify it. Let: \[ u = \frac{e^x}{2}, \quad du = \frac{e^x}{2} dx \] Now the integral becomes: \[ \int \frac{e^x}{\sqrt{4 - 2x}} dx = \sin^{-1} \left( \frac{e^x}{2} \right) + C \] Thus, the answer is $\sin^{-1} \left( \frac{e^x}{2} \right) + C$.