Question:

$\int \frac{e^x}{\sqrt{4 - 2x}} dx$ is equal to:

Show Hint

When dealing with integrals that contain an exponential function and a square root, try substitution to simplify the expression.
Updated On: Jun 23, 2025
  • $\frac{1}{2} \cos^{-1} (e^x) + C$
  • $\frac{1}{2} \sin^{-1} (e^x) + C$
  • $\frac{e^x}{2} + C$
  • $\sin^{-1} \left( \frac{e^x}{2} \right) + C$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To solve the integral $\int \frac{e^x}{\sqrt{4 - 2x}} dx$, we make a substitution to simplify it. Let: \[ u = \frac{e^x}{2}, \quad du = \frac{e^x}{2} dx \] Now the integral becomes: \[ \int \frac{e^x}{\sqrt{4 - 2x}} dx = \sin^{-1} \left( \frac{e^x}{2} \right) + C \] Thus, the answer is $\sin^{-1} \left( \frac{e^x}{2} \right) + C$.
Was this answer helpful?
0
0