We have \( I = \int \frac{dx}{12\cos x + 5\sin x} \).
Let \( 12 = R\cos\alpha \) and \( 5 = R\sin\alpha \).
Then \( R = \sqrt{12^2+5^2} = \sqrt{144+25} = \sqrt{169} = 13 \).
And \( \cos\alpha = \frac{12}{13}, \sin\alpha = \frac{5}{13} \).
So \( \tan\alpha = \frac{5}{12} \implies \alpha = \tan^{-1}\left(\frac{5}{12}\right) \).
The denominator becomes:
\( 12\cos x + 5\sin x = R\cos\alpha\cos x + R\sin\alpha\sin x = R(\cos x \cos\alpha + \sin x \sin\alpha) = R\cos(x-\alpha) = 13\cos(x-\alpha) \).
So, \( I = \int \frac{dx}{13\cos(x-\alpha)} = \frac{1}{13} \int \sec(x-\alpha) dx \).
We know \( \int \sec u du = \log|\sec u + \tan u| + C \).
Or \( \int \sec u du = \log\left|\tan\left(\frac{u}{2} + \frac{\pi}{4}\right)\right| + C \).
Let \( u = x-\alpha \).
\[ I = \frac{1}{13} \log\left|\tan\left(\frac{x-\alpha}{2} + \frac{\pi}{4}\right)\right| + c \]
\[ I = \frac{1}{13} \log\left|\tan\left(\frac{x}{2} - \frac{\alpha}{2} + \frac{\pi}{4}\right)\right| + c \]
Substitute \( \alpha = \tan^{-1}\left(\frac{5}{12}\right) \):
\[ I = \frac{1}{13} \log\left|\tan\left(\frac{\pi}{4} + \frac{x}{2} - \frac{1}{2}\tan^{-1}\frac{5}{12}\right)\right| + c \]
This matches option (1).