\( 2 \left[ \frac{1+\sqrt{x}}{2020} - \frac{1}{2021(1+\sqrt{x})} \right] + C \)
\( 2 \left[ \frac{(1+\sqrt{x})^{-2020}}{2020} - \frac{(1+\sqrt{x})^{-2021}}{2021} \right] + C \)
\(\frac{2}{2021(1 + \sqrt{x})^{2021}} - \frac{1}{1010(1 + \sqrt{x})^{2020}} + C\)
We want to solve the integral:
\[ \int \frac{dx}{(1 + \sqrt{x})^{2022}} \]
Let:
\[ u = 1 + \sqrt{x} \quad \Rightarrow \quad \sqrt{x} = u - 1 \quad \Rightarrow \quad x = (u - 1)^2 \]
Differentiating both sides:
\[ dx = 2(u - 1) \, du \]
Substitute into the integral:
\[ \int \frac{dx}{(1 + \sqrt{x})^{2022}} = \int \frac{2(u - 1)}{u^{2022}} \, du \]
\[ = \int \left( \frac{2u}{u^{2022}} - \frac{2}{u^{2022}} \right) du = \int \left( 2u^{-2021} - 2u^{-2022} \right) du \]
\[ \int 2u^{-2021} \, du = \frac{2u^{-2020}}{-2020} = -\frac{1}{1010}u^{-2020} \]
\[ \int -2u^{-2022} \, du = \frac{2u^{-2021}}{2021} \]
Substitute back \( u = 1 + \sqrt{x} \):
\[ \int \frac{dx}{(1 + \sqrt{x})^{2022}} = \frac{2}{2021(1 + \sqrt{x})^{2021}} - \frac{1}{1010(1 + \sqrt{x})^{2020}} + C \]