\(\int\frac{2\cos 2x}{(1+\sin 2x)(1+\cos 2x)}dx=\)
Step 1: Simplify the integrand.
We have \(\sin 2x = 2\sin x \cos x\) and \(\cos 2x = 2\cos^2 x - 1 = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x\).
Also, \(1 + \cos 2x = 2\cos^2 x\) and \(1 + \sin 2x = (\sin x + \cos x)^2\).
The integral becomes: \(\int \frac{2\cos 2x}{(1+\sin 2x)(1+\cos 2x)}dx = \int \frac{2(\cos^2 x - \sin^2 x)}{(\sin x + \cos x)^2 (2\cos^2 x)} dx\)
= \(\int \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)^2 \cos^2 x} dx\)
= \(\int \frac{\cos x - \sin x}{(\cos x + \sin x) \cos^2 x} dx\)
= \(\int \frac{\cos x - \sin x}{\cos^2 x (1 + \tan x)} dx\)
= \(\int \frac{\frac{\cos x}{\cos^2 x} - \frac{\sin x}{\cos^2 x}}{1 + \tan x} dx\)
= \(\int \frac{\sec x - \sec x \tan x}{1 + \tan x} dx\)
= \(\int \frac{\sec x (1 - \tan x)}{1 + \tan x} dx\)
Step 2: Use the substitution t = \(\tan x\).
Then dt = \(\sec^2 x dx\).
We need to rewrite the integral in terms of \(\tan x\).
\(\int \frac{\cos x - \sin x}{(\cos x + \sin x) \cos^2 x} dx = \int \frac{\frac{\cos x - \sin x}{\cos^2 x}}{\frac{\cos x + \sin x}{\cos^2 x}} dx\)
= \(\int \frac{\sec x - \tan x \sec x}{1 + \tan x} dx\)
= \(\int \frac{1 - \tan x}{1 + \tan x} \sec^2 x \frac{1}{\sec x} dx\)
= \(\int \frac{1 - \tan x}{1 + \tan x} \frac{1}{\cos x} dx\)
Step 3: Use the substitution u = 1 + \(\tan x\).
Then du = \(\sec^2 x dx\).
We have \(\cos 2x = \cos^2 x - \sin^2 x = \frac{\cos^2 x - \sin^2 x}{\cos^2 x + \sin^2 x} = \frac{1 - \tan^2 x}{1 + \tan^2 x}\).
\(\sin 2x = 2\sin x \cos x = \frac{2\sin x \cos x}{\cos^2 x + \sin^2 x} = \frac{2\tan x}{1 + \tan^2 x}\).
\(\int \frac{2\cos 2x}{(1+\sin 2x)(1+\cos 2x)} dx = \int \frac{2(1 - \tan^2 x)}{(1 + 2\tan x + \tan^2 x)(2\cos^2 x)} dx\)
= \(\int \frac{1 - \tan^2 x}{(1 + \tan x)^2 \cos^2 x} dx\)
= \(\int \frac{(1 - \tan x)(1 + \tan x)}{(1 + \tan x)^2 \cos^2 x} dx\)
= \(\int \frac{1 - \tan x}{1 + \tan x} \sec^2 x dx\)
Let u = 1 + \(\tan x\). Then du = \(\sec^2 x dx\).
\(\tan x = u - 1\).
\(\int \frac{1 - (u - 1)}{u} du = \int \frac{2 - u}{u} du\)
= \(\int (\frac{2}{u} - 1) du = 2\log|u| - u + c\)
= \(2\log|1 + \tan x| - (1 + \tan x) + c\)
= \(2\log|1 + \tan x| - \tan x - 1 + c\)
= \(2\log|1 + \tan x| - \tan x + c'\)
Therefore, the integral is \(2\log(1+\tan x) - \tan x + c\).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: