1. Understand the integral:
We need to evaluate \( \int \frac{1}{6(\log x)^2 + 7\log x + 2} \, dx \).
2. Use substitution:
Let \( u = \log x \), then \( du = \frac{1}{x} dx \) or \( x du = dx \).
The integral becomes:
\[ \int \frac{x}{6u^2 + 7u + 2} du \]
But since \( x = e^u \), we have:
\[ \int \frac{e^u}{6u^2 + 7u + 2} du \]
3. Factor the denominator:
\[ 6u^2 + 7u + 2 = (2u + 1)(3u + 2) \]
4. Apply partial fractions:
\[ \frac{1}{(2u + 1)(3u + 2)} = \frac{A}{2u + 1} + \frac{B}{3u + 2} \]
Solving for \( A \) and \( B \):
\[ 1 = A(3u + 2) + B(2u + 1) \]
Setting \( u = -\frac{1}{2} \): \( 1 = A\left(-\frac{3}{2} + 2\right) \implies A = 2 \)
Setting \( u = -\frac{2}{3} \): \( 1 = B\left(-\frac{4}{3} + 1\right) \implies B = -3 \)
Thus:
\[ \frac{1}{(2u + 1)(3u + 2)} = \frac{2}{2u + 1} - \frac{3}{3u + 2} \]
5. Integrate:
\[ \int \left( \frac{2}{2u + 1} - \frac{3}{3u + 2} \right) du = \log |2u + 1| - \log |3u + 2| + C = \log \left| \frac{2u + 1}{3u + 2} \right| + C \]
6. Substitute back \( u = \log x \):
\[ \log \left| \frac{2\log x + 1}{3\log x + 2} \right| + C \]
Correct Answer: (B) \( \log \left| \frac{2\log x + 1}{3\log x + 2} \right| + C \)
Substitute $u = \log x$, so $du = \frac{1}{x} dx$. The integral becomes: \[ I = \int \frac{1}{6u^2 + 7u + 2} \, du. \] Factorize $6u^2 + 7u + 2$: \[ 6u^2 + 7u + 2 = (3u + 2)(2u + 1). \] Use partial fractions: \[ \frac{1}{(3u + 2)(2u + 1)} = \frac{A}{3u + 2} + \frac{B}{2u + 1}. \] Solve for $A$ and $B$, and integrate: \[ I = \log \frac{\left|2\log x + 1\right|}{3\log x + 2} + C. \]
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: