1. Understand the integral:
We need to evaluate \( \int \frac{1}{6(\log x)^2 + 7\log x + 2} \, dx \).
2. Use substitution:
Let \( u = \log x \), then \( du = \frac{1}{x} dx \) or \( x du = dx \).
The integral becomes:
\[ \int \frac{x}{6u^2 + 7u + 2} du \]
But since \( x = e^u \), we have:
\[ \int \frac{e^u}{6u^2 + 7u + 2} du \]
3. Factor the denominator:
\[ 6u^2 + 7u + 2 = (2u + 1)(3u + 2) \]
4. Apply partial fractions:
\[ \frac{1}{(2u + 1)(3u + 2)} = \frac{A}{2u + 1} + \frac{B}{3u + 2} \]
Solving for \( A \) and \( B \):
\[ 1 = A(3u + 2) + B(2u + 1) \]
Setting \( u = -\frac{1}{2} \): \( 1 = A\left(-\frac{3}{2} + 2\right) \implies A = 2 \)
Setting \( u = -\frac{2}{3} \): \( 1 = B\left(-\frac{4}{3} + 1\right) \implies B = -3 \)
Thus:
\[ \frac{1}{(2u + 1)(3u + 2)} = \frac{2}{2u + 1} - \frac{3}{3u + 2} \]
5. Integrate:
\[ \int \left( \frac{2}{2u + 1} - \frac{3}{3u + 2} \right) du = \log |2u + 1| - \log |3u + 2| + C = \log \left| \frac{2u + 1}{3u + 2} \right| + C \]
6. Substitute back \( u = \log x \):
\[ \log \left| \frac{2\log x + 1}{3\log x + 2} \right| + C \]
Correct Answer: (B) \( \log \left| \frac{2\log x + 1}{3\log x + 2} \right| + C \)
Substitute $u = \log x$, so $du = \frac{1}{x} dx$.
The integral becomes: \[ I = \int \frac{1}{6u^2 + 7u + 2} \, du. \]
Factorize $6u^2 + 7u + 2$: \[ 6u^2 + 7u + 2 = (3u + 2)(2u + 1). \] Use partial fractions: \[ \frac{1}{(3u + 2)(2u + 1)} = \frac{A}{3u + 2} + \frac{B}{2u + 1}. \] Solve for $A$ and $B$, and integrate: \[ I = \log \frac{\left|2\log x + 1\right|}{3\log x + 2} + C. \]