Step 1: Use the property of definite integrals
The integral \( \int_{-a}^a f(x) \, dx = 0 \) if the function \( f(x) \) is odd. A function \( f(x) \) is odd if: \[ f(-x) = -f(x). \]
Step 2: Simplify the integral for odd functions
For odd functions: \[ \int_{-a}^a f(x) \, dx = \int_{-a}^0 f(x) \, dx + \int_{0}^a f(x) \, dx. \]
Since \( f(-x) = -f(x) \), the integral over \( [-a, 0] \) cancels with the integral over \( [0, a] \), resulting in: \[ \int_{-a}^a f(x) \, dx = 0. \]
Step 3: {Conclude the result}
The given integral equals 0 when \( f(-x) = -f(x) \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: