Step 1: Check if the integrand is odd or even.
Let \( f(x) = \tan^9 x \sin^6 x \cos^3 x \).
\( f(-x) = (-\tan x)^9 (-\sin x)^6 (\cos x)^3 = -\tan^9 x \sin^6 x \cos^3 x = -f(x) \).
So, \( f(x) \) is an odd function.
Step 2: Apply the property of definite integrals for odd functions.
For an odd function \( f(x) \), \( \int_{-a}^{a} f(x) \, dx = 0 \).
Here, \( a = 4\pi \), so \( \int_{-4\pi}^{4\pi} \tan^9 x \sin^6 x \cos^3 x \, dx = 0 \).